DoS Detection Method based on Artificial Neural Networks
نویسندگان
چکیده
DoS attack tools have become increasingly sophisticated challenging the existing detection systems to continually improve their performances. In this paper we present a victimend DoS detection method based on Artificial Neural Networks (ANN). In the proposed method a Feed-forward Neural Network (FNN) is optimized to accurately detect DoS attack with minimum resources usage. The proposed method consists of the following three major steps: (1) Collection of the incoming network traffic, (2) selection of relevant features for DoS detection using an unsupervised Correlation-based Feature Selection (CFS) method, (3) classification of the incoming network traffic into DoS traffic or normal traffic. Various experiments were conducted to evaluate the performance of the proposed method using two public datasets namely UNSW-NB15 and NSL-KDD. The obtained results are satisfactory when compared to the state-of-the-art DoS detection methods. Keywords—DoS detection; Artificial Neural Networks; Feedforward Neural Networks; Network traffic classification; Feature selection
منابع مشابه
STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM
Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملSimultaneous Monitoring of Multivariate-Attribute Process Mean and Variability Using Artificial Neural Networks
In some statistical process control applications, the quality of the product is characterized by thecombination of both correlated variable and attributes quality characteristics. In this paper, we propose anovel control scheme based on the combination of two multi-layer perceptron neural networks forsimultaneous monitoring of mean vector as well as the covariance matrix in multivariate-attribu...
متن کاملComparison Study on Neural Networks in Damage Detection of Steel Truss Bridge
This paper presents the application of three main Artificial Neural Networks (ANNs) in damage detection of steel bridges. This method has the ability to indicate damage in structural elements due to a localized change of stiffness called damage zone. The changes in structural response is used to identify the states of structural damage. To circumvent the difficulty arising from the non-linear n...
متن کاملThe Diagnosis of Brucellosis in Rafsanjan City Using Deep Auto-Encoder Neural Networks
Introduction: Brucellosis is considered as one of the most important common infectious diseases between humans and animals. Considering the endemic nature of brucellosis and the existence of numerous reports of human and animal cases of brucellosis in Iran, the incidence of human brucellosis in Rafsanjan city was determined in the last 3 years (2016–2018). The main objective of this study was t...
متن کامل